Manufacturing AUTOMATION

Getting to know IEC TC65 for measurement and control

November 27, 2012 | By Kristina Urquhart

IEC TC65 and its subcommittees are responsible for preparing “international standards for systems and elements used for industrial-process measurement and control concerning continuous and batch processes.”
There are four subcommittees within TC 65: SC65A, dealing predominantly with safety-related items; SC65B, covering instrumentation and analyzers; SC65C, looking at communications and networks including industrial wireless; and SC65E, examining the specification of digital representation of devices. There are also a number of Working Groups responsible for such items as cybersecurity and Joint Working Groups that cooperate between different IEC and ISO committees.
The IEC “65” committees met the week before and after ISA Automation Week in Orlando to continue their work and have a plenary meeting. This plenary meeting is held every 18 months where the various oversight boards of “65” meet to review the status of existing and planned work items or standards. Canada is represented at the IEC by our mirror committees operated through the Standards Council of Canada. Here are some of the highlights from these meetings that could have an impact on you and your work as a Canadian engineer.
In SC65A, the Maintenance Team (MT) for IEC/ISO 61508 parts 1, 2, 4, 5, 6 and 7 reported that an enhanced (or augmented) version of IEC/ISO 61508 with mark-ups and hyperlinks that provides additional text to support the implementation of the existing IEC/ISO 61508 is available for sale from the IEC website.
As the current IEC/ISO 61508 standard does not address human factor issues, the ad-hoc group on human factors and functional safety recommends the establishment of a working group to add the required material, and they have identified an existing U.K. document as a good starting source for this information.
With the increasing use of smart transmitters, SC65B will be revising IEC 60770-3 “Methods for performance evaluation of intelligent transmitters,” which is starting its regular maintenance cycle to reflect these changes. The committee is working with European End User Groups CLUI and EXERA who are providing input to the proposed changes.
Similarly, IEC 62828, “Requirements and tests for industrial measurement transmitters,” is to be updated to incorporate digital capabilities of modern transmitters and will be created as a new series of documents for pneumatic, analogue, digital, etc. Lastly, France is preparing a potential proposal submittal of a “Software for standard application” work item.
IEC 62603, “Industrial process control systems – Guidelines for evaluating the performance of process control systems,” will be released as a technical report for this revision, with plans to move to a full specification in three years.
The analyzer side of SC65B is working on the following document of interest to all of us because it could affect our pocketbooks: IEC 62723 Ed 1.0 “Sampling and conditioning natural gas for custody transfer analysis.” This could have an impact on the international standard for how samples are to be made for payment of natural gas which is measured in volume but paid for in energy units based on the sample analysis.
Series of standards on analyzer houses are in development that will improve the reliability of analyzer sample systems. As Canada has a number of experts in this area we should contribute to these documents which at present are being driven by NAMUR from Germany.
SC65C, which includes the wireless standards where ISA100.11a is presently in ballot with a planned draft standard release in Q1 2013, also reported on the status of the 52 documents they oversee including 25 fieldbus documents, 27 Ethernet documents and nine fieldbus safety profiles.
The final group, SC65E, is home to the various ‘languages’ and protocols for device communication and FDI (Field Device Interface), and will issue a draft ballot in March 2013 and five related new work proposals for H1, HSE, Profibus, Profinet and HART protocols. In addition, IEC 61804-1 will be withdrawn by January.
The largest work piece underway within SC65E JWG 17, Lists of Properties (LOP) for automated valves and process regulators (SC65B/WG9 and SC65E/WG2), is generating Operating Lists of Properties (OLOP) and Device Lists of Properties (DLOP) for automated industrial valves (including control valves and process regulators) and their components as well as the characterization for this device family. When implemented, this will have significant impact on the way we work because the List Of Properties standards are defining all the parameters associated with the life cycle of a field device in a database format which will replace data sheets and allow for the ordering, repair and disposition of any field device within this single environment.
A relatively new IECEE CB-scheme creates an Industrial Automation (INDAT) category that means industrial automation equipment certified by an IEC-subscribing nation can be accepted worldwide. It is therefore important that with a U.S. approval agency participating and supporting the resulting standards, Canada must participate in the development of IEC 61010-2-201 which is the first document to use INDAT on electrical safety of industrial control equipment.
Many of us take standards for granted, however, as we all know, they do have a significant impact on our lives and work. Therefore, if you feel that you have some expertise in the area of automation and control and an interest in participating in the IEC standards activity on behalf of Canada, please let me know and I will be sure to forward your information on to the SCC and the appropriate committee.

This article originally appeared in the November/December issue of Manufacturing AUTOMATION.


Print this page

Advertisement

Story continue below



Tags