Manufacturing AUTOMATION

Features Factory
Shifting to wireless: Transmission manufacturer takes a technological leap


June 15, 2006
By Manufacturing AUTOMATION

Topics

If you bought a cell phone in 1996, chances are it was big, bulky and approximately the size of a shoe. It didn’t do much–just let you make and receive phone calls. It probably cost a pretty penny, too, with rates running upwards of a dollar a minute.

Now imagine you still had that phone today. For the past 10 years, you used the perfectly functional, if slightly outdated, phone, and it served you well. But let’s say you decided to upgrade your phone. Today’s cell phones are razor-thin and incorporate full-colour graphics, text messaging capabilities, video games, MP3 players, and can even provide access to television and the Internet.

That’s a lot of new technology that you missed out on in 10 years. And it can be an intimidating task to update to a newer technology when you’ve grown accustomed to using the older one.

Hastech Manufacturing faced a similar challenge. The Guelph, Ont.-based subsidiary of auto parts giant Linamar builds transmissions for some of the world’s biggest automakers. But automakers don’t often redesign transmissions, so Hastech had not changed its manufacturing process in years.

Advertisment

“The design [of a transmission] will stay unchanged for 10, 12 or 15 years,” says Jason Balzer, program manager for Hastech. “Some transmissions run for 20 or 30 years without changing. Many of the products we have here have been around for more than 10 years.”

Recently, one of the company’s clients designed a new transmission, which meant Hastech had to design a new line to make it. Since Hastech had not launched a new product in a number of years, it had not needed to make use of the latest automation technology available. Like the fictional cell phone user, the company needed to adjust to some big changes in technology.

Small space = big challenge
Hastech was faced with some very tight constraints, the biggest of which was also the smallest: The company had to find a way to get 110 machines and 32 gauges spanning four separate product numbers to fit in an area totalling slightly more than 14,000 sq. ft. Hastech also needed to control all four lines independently and deal with the large amounts of inputs and outputs needed to communicate with the machines, gauges and robots–all while still maintaining acceptable uptime numbers for its customer.

So the company turned to Andor Robotic Solutions, an automation solutions provider, also based in Guelph. Together with Andor, Hastech created a new, technologically advanced manufacturing line that met all of its requirements and more.

Meeting of the minds
Hastech was originally looking for a quote on automating a number of smaller, individual cells. “When we realized the scope of the job, we asked them if we should look at the whole line overall and a total automation solution,” says Steve Spanjers, Andorís vice-president. “That’s where it started.”

Andor’s team realized the job would not be easy. With so much to cram into such a tight space, they had to find a solution that was different from anything they’d ever done before.

“When they told us the floor space requirements, we almost laughed at them,” says Mike Kazmaier, a sales manager at Andor. “That really drove the direction.”

Hastech and Andor then sat down to start working on a layout. “We probably had 40 iterations of this layout on our server,” says Kazmaier. “There were a couple of places where they were actually combining the two lines to share a machine and then breaking them off again later on. Putting that layout together was, I think, one of the toughest parts of the job.

“It’s like pieces of a puzzle,” he adds. “The problem is that when the puzzle has to combine in certain places, you can only assemble it in a certain way. We had to come up with something that was going to work and was also going to fit in the space they wanted it to.”

So how did Andor and Hastech finally solve this puzzle? The team developed and implemented a full wireless control system.

“We started looking at placing individual panels out on the line and we kept coming up with really big numbers, like we would need 100 HMI (human-machine interface) panels,” Spanjers says. “Then we started talking about different wires and pendants that we could plug in around the line, but even just the cost of running drops all over the place would have been quite high. That’s when we came on this wireless solution that we developed with some help from Rockwell. As far as we know, this is the first time a system like this has been used in production.”

The line was carefully engineered to use 32 ceiling-mounted gantry robots, four floor-mounted robots and several custom-designed pick-and-place units. All of the control is done from one AB Controllogix CPU connected to an Ethernet network.

Andor’s team installed an RSView SE server and programmed it to meet Hastech’s specifications. They connected the server to a floor-mounted switch via a fibre optic cable and connected wireless access points to this switch, along with the PLC. The control devices are simply rugged tablet PCs, with standard 802.11b wireless Ethernet cards.

Not only did the wireless solution allow Hastech to fit everything into the small space, it also saved money. “The big savings is not running wire,” says Spanjers. “We don’t have to run wire. We don’t have to make panels all over the place. To pull all that extra wire at the front-end of the project would have cost more time. In this case, we ran one Ethernet cord from the access point.”

And because it is so customized, the new solution also gives Hastech the flexibility it needs. “The lines were installed to run completely automated, but we wanted the flexibility to be able to turn them manually,” Balzer says. “It does complicate the whole integration, because certain things you want to do when running a machine or a section manually, you don’t want to do when you run it with automation. But with these HMIs, they can provide us the functionality to turn off certain pieces of automation.”

Up and running
The fact that the solution was wireless posed a challenge at first, Spanjers explains. “When we called Rockwell for technical support, when we told them what we were doing, the tech support guys were always a little nervous because they’d never heard of it being done before.

“It was a bit stressful at the start to get it set up,” he adds, “not knowing for sure because it hadn’t been done before.”

Hastech is ramping up production on the line before its client launches the new transmission into wide release, and it’s looking good.

While the team has yet to calculate hard numbers in terms of savings or return on investment, they all agree the savings are there. “We did run some preliminary numbers,” says Spanjers. “For us, it looked like at least a cost wash and a time saver. When you look at it that way, it makes a lot of sense.”

“There is some direct cost-savings, too,” adds Balzer. The gauges Hastech is using on the floor “didn’t come with a cycle start button on them,” he says. “Rather than having electricians install a physical button, we could actually, on the tablet PC, add a virtual start button.”

The wireless aspect also makes Hastech’s IT requirements easier. “It’s just a tablet PC,” Spanjers says. “All Linamar’s IT staff know how to handle it. The access point is just a regular 802.11. IT knows how to support it already.”

Finally, the solution allows Hastech to tweak the line before the product goes into wide release. The robots are easily reprogrammed and re-tasked, Spanjers says. “We make a quick programming change and we’re back up and running.”

The future
For Hastech, though, the real key is how well the line can change and evolve to meet future requirements. “I don’t even think at this point we’ve even really used it up to its full advantage,” Balzer says. “We will start to realize over time how much more useful it really is.”

Spanjers agrees. “From the control architecture point of view, Hastech is actually looking at more of an advanced data collection system they want to build on top of it. Because the architecture is so scalable, it’s not going to be a huge leap for them to jump in and throw in another server to do some data collection so they can calculate everything automatically and gauge and control the line better.”

The strict quality control process in the automotive manufacturing industry is always a challenge for companies like Hastech, and the new solution could help improve that as well. It can allow the engineers to communicate with the shop floor instantly when production requirements change.

“When you start talking about just-in-time and tight deadlines, being able to communicate with the guys on the floor, and communicate changes down through e-mail and update the process specs, quality assurance and production requirements–it brings the shop floor guys closer to these guys up here so they can communicate better,” Spanjers says.

And how does Hastech appreciate the new line? “We’ve never worked on another program that’s been nearly as big,” Balzer says. “We had to use the old-fashioned HMIs to know how good we’ve got it right now.”

Alison Dunn is a Burlington, Ont.-based freelance writer, and former editor of Manufacturing AUTOMATION.