Accelerating fuel-efficient car production with 3D printing

Sunday March 26, 2017
Written by The University of Nottingham
Mar. 26, 2017 -  Engineers at The University of Nottingham say they are developing lightweight automotive components using new additive manufacturing processes to boost vehicle fuel efficiency, while cutting noise and CO2 emissions.

The components will be constructed using selective laser melting (SLM). SLM uses a 3-Dimensional Computer Aided Design (CAD) model to digitally reproduce the object in a number of layers.
 
Each layer is sequentially recreated by melting sections of a bed of aluminium alloy powder using a laser beam. Layer by layer, the melted particles fuse and solidify to form novel structures that can be made up from complex lattices to provide a lightweight component.
 
The engineers describe SLM as a “highly disruptive” AM technology, helping to increase functionality and lower the number of separate components in production, adding that this “significant mass saving cuts component costs and increases overall vehicle efficiency.”
 
The Functional Lattices for Automotive Components (FLAC) project aims to achieve significant weight reductions in mass (40 to 80 per cent) and optimized thermo-mechanical performance in new vehicle components.

The use of advanced lightweight materials in the project will serve to minimize wastage. Only the required material is incorporated into the built component, reducing costs, increasing the ability to manipulate the material to achieve the required performance and efficiency.
 
Environmental advantages include the inherent recyclability of the aluminium powder waste, reduced transportation and the elimination of special tooling and hazardous cutting fluids to produce the SLM parts.

The three-year FLAC project also will demonstrate the viability and cost analysis of the industrialization of SLM, along with possible manufacturing routes and supply chain models.

FLAC project lead, Professor Chris Tuck, from the Additive Manufacturing and 3D Printing Research Group, said, “FLAC will benefit U.K. automotive companies, increasing their competitiveness by allowing them to adopt innovative routes for the design and manufacture of lightweight on-vehicle componentry, with shorter lead times and lower costs than are presently available.”

The FLAC project, which has secured £368,286 from Innovate UK, will investigate components such as brake calipers, heat sinks for LED headlights and power train subsystems.
 
The short-term market opportunity for these components — which will also deliver a decrease in CO2 emissions by 16.97g/km — lies in the luxury car and motorsport markets.

Professor Tuck said, “The automotive sector is one of the U.K.’s leading export sectors by value, representing around 6.3 per cent of all UK exports. Successful delivery of FLAC’s portfolio will enhance the R&D leadership in the key automotive technologies, and strengthen the U.K. automotive supply chain, resulting in increased revenues to the U.K. economy and government.”

Add comment


Security code
Refresh

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Events

ABB Customer World
March 4-7, 2019
ATS Knowledge Day
March 28, 2019
Hannover Messe 2019
April 1-5, 2019
RFID Journal LIVE!
April 2-4, 2019
Automate/ProMat 2019
April 8-11, 2019

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.